2D Deconvolution Using Adaptive Kernel

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic adaptive kernel deconvolution

In this paper, we consider a multidimensional convolution model for which we provide adaptive anisotropic kernel estimators of a signal density f measured with additive error. For this, we generalize Fan’s (1991) estimators to multidimensional setting and use a bandwidth selection device in the spirit of Goldenshluger and Lepski’s (2011) proposal for density estimation without noise. We conside...

متن کامل

Sparse deconvolution using adaptive mixed-Gaussian models

In this paper we present a new algorithm to recover a sparse signal from a noisy register. The algorithm assumes a new prior distribution for the sparse signal that consists of a mixture of a narrow and a broad Gaussian both with zero mean. A penalty term which favors solutions driven from this model is added to the usual error cost function and the resultant global cost function is minimized b...

متن کامل

Nonparametric density deconvolution by weighted kernel estimators

JSM, Denver, 4 August 2008 – 3 / 23 We observe a univariate random sample Y1, . . . , Yn from a density g, where Yi = Xi + Zi (i = 1, . . . , n). Here X1, . . . , Xn are independent and identically distributed with unknown continuous density f , and the measurement errors Z1, . . . , Zn form a random sample from the continuous density η which we assume to be known. Our goal is to obtain a nonpa...

متن کامل

Global Behavior of Deconvolution Kernel Estimates

The desire to recover the unknown density when data are contaminated with errors leads to nonparametric deconvolution problems. The difficulty of deconvolution depends on both the smoothness of error distribution and the smoothness of the priori. Under a general class of smoothness constraints, we show that deconvolution kernel density k-l estimates achieve the best attainable global rates of c...

متن کامل

Adaptive Kernel Methods Using the Balancing Principle

The regularization parameter choice is a fundamental problem in Learning Theory since the performance of most supervised algorithms crucially depends on the choice of one or more of such parameters. In particular a main theoretical issue regards the amount of prior knowledge needed to choose the regularization parameter in order to obtain good learning rates. In this paper we present a paramete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings

سال: 2019

ISSN: 2504-3900

DOI: 10.3390/proceedings2019033006